Anisotropic composite model for layered rock
mass based on characteristics of soft
interfaces
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Based on the Drucker—Prager criterion, an anisotropic composite model of layered rock mass is
proposed with the physico-mechanical characteristics of soft interface and rock matrix, and it
can be used to describe the anisotropic characteristics of rock strength and deformation, as well
as progressive failure or sliding characteristics. Then, the proposed model has been
successfully established and embedded on the basis of the developing platform of ABAQUS
and MATLAB, realising nonlinear numerical calculation. Through a typical example, the
proposed model is verified. Finally, the proposed model is used to simulate a tunnel construction
project, and the results show that this model can better explain the deformation and failure

phenomenon of layered rock mass, and they are in accordance with engineering practice.
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Introduction

Many geomaterials, such as sedimentary rocks, exhibit
significant initial or inherent anisotropy, which is a type
of common rock mass in practical engineering such as
the field of transportation, tunnel construction, oil or
gas storage and high-level radioactive waste repository.
The concept of anisotropy effects caused by soft interface
was first proposed by Jeager.! Since then, many authors
did many experimental and theoretical studies for
layered rock mass. These studies clearly reveal the direc-
tional dependence of strength and indicate that the
maximum axial compressive strength is associated with
configurations in which the soft interfaces are either paral-
lel or perpendicular to the loading direction. At the same
time, the minimum strength is typically associated with the
failure along the soft interfaces, which corresponds to
sample orientation within the range of 30-60°. The behav-
iour of layered rock mass is determined not only by the
properties of the rock matrix, but mostly by the presence
and properties of discontinuities or soft interfaces within
the rock mass.>* Continuity, orientation and frictional
characteristics of the soft interfaces influence the deform-
ability and strength of the layered rock masses. For the
safety analysis of structures constructed in such geological
formations, it is necessary to develop constitutive models
which are able to account for the influence of anisotropy.

Various constitutive models have been proposed for the
description of plastic deformation and failure in layered
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rock mass, which can be divided into three types. The
first type of models is based on the concept of discontinu-
ous soft interfaces.*> These models provide a direct
interpretation of material anisotropic properties, in
which soft interfaces are set as joint element or discontinu-
ity element in rock mass. However, it is generally difficult
to use such models for complex engineering applications.
The second family of models are continuous failure criter-
ions and essentially empirical in nature, and they are
obtained from direct extension of isotropic formulations
by introducing the variation of some parameters with
dip angle of soft interfaces or the orientation of
maximum principal stress.>® However, the formulation
of such models cannot reflect the different yield and
failure modes, and have no physical nature differences
between rock matrix and soft interfaces. Other models
are a non-continuous failure criterion based on the
concept of macroscopic composite materials.”'® These
models consider two types of failure in layered rock
mass: rock matrix breaking and shear slip of soft inter-
faces. The main advantage of this approach is that the pro-
posed models retain the mathematical rigour, and at the
same time, has a clear physical meaning for the par-
ameters, which is obtained easily from experiments.
However, the formulation of such models is complex,
and the numerical implement is not easy.

A great number of investigations have been performed to
characterise deformation properties and failure conditions
in layered rock mass, but the study of anisotropy strength
criterion and constitutive model is not perfect for the
complex-layered rock mass. By application the assumption
of layered rock mass as macroscopic composite materials,
an anisotropic constitutive model is proposed based on
the failure criterion of Drucker— Prager, which is deter-
mined by their own properties of rock matrix and soft
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interfaces. Based on the secondary development platform of
constitutive model in ABAQUS, this model is successfully
developed and embedded. Through the typical examples,
the proposed model is verified.

Constitutive relation of layered rock
mass

The layered rock mass is considered as a special type of
macroscopical composite material, which is made of iso-
tropic rock matrix and a set of soft interfaces. The coor-
dinate system of layered rock mass is shown in Fig. 1,
in which the x—y plane is the bedding surface and the
z-axis is normal direction of soft interfaces for local coor-
dinate system. The incremental relation of stress—strain in
the global coordinate system can be defined as''

de® = Cdo = [C, + C{]do (1)

where de®! is the elastic strain increment of layered rock,
do is the stress increment of layered rock and C is the
total flexibility matrix composed of C; for rock matrix
and C; for soft interfaces.

According to the stress continuity of rock matrix and
soft interfaces in layered rock mass, equation (1) can be
rewritten as

do, = doy = do
{ de? = de + ded! @

where do, and de¢! are the stress and strain increment of
rock matrix, dey and ds?1 are the stress and strain incre-
ment of soft interfaces.

According to the elasticity mechanics, the flexibility
matrix of C,and C; for three-dimensional problem in
equation (1) can be defined as follows
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where E and y are the elastic modulus and Poisson’s ratio
of rock matrix, L is the coordinate transformation matrix
and Cy is the flexibility matrix of soft interfaces in the
local coordinate system defined as
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where A and S are the fracture connectivity rate and frac-
ture spacing, K, is the normal stiffness, K, and Kj, are the
tangential stiffness in the bedding surface, (/;, my, ny) is
the direction cosine of x-axes to the global coordinate
system, (l», my, n») is the direction cosine of y-axes to the
global coordinate system, and (I3, ms3, n3) is the direction
cosine of z-axes to the global coordinate system.

The plastic strain increment can be calculated from to
the plastic potential function as

def =) ‘Z—G (7)
o

where A is plastic multiplier, G is plastic potential function.
Based on the above analysis, the total strain of layered
rock mass can be written as'

de = de! + de” = [de” + def'] + [deP' + del']  (8)

1 . ..
where deP! and def are plastic strain increment of rock
matrix and soft interfaces, respectively.

Anisotropic strength criteria of layered
rock mass

The strength characteristics of layered rock mass are the
comprehensive reflection of rock matrix and soft inter-
faces owing to the different mechanical properties, and
it is possible that failure or damage occurs in the rock
matrix or soft interfaces.

The normal stress and shear stress on the soft interfaces
can calculated as

pr=nf-0-N¢ 9
{Tﬁ:nf'o"tﬁ ©

where pr and t¢; are the normal stress and shear stress on
the soft interfaces, ns is the normal unit vector of soft



interfaces, t;(tr, try) are two mutually perpendicular unit
vectors on the soft interfaces (Fig. 1), and o is stress tensor
in the layered rock mass.

The normal stiffness K, tends to zero when the normal
stress on the soft interfaces becomes the state of tensile
stress (pr < 0).

Similarly, the normal strain and shear strain of soft
interfaces can be expressed as

&m =Ny - € 0p
{Vﬁ=nf'£'tﬁ+tﬁ-£~nf (19)

where er, and y;; are the normal strain and shear strain of soft

interfaces, and ¢ is the strain tensor in the layered rock mass.
Based on the modified Drucker—Prager criterion, the

yield function of soft interfaces can be defined as'’

Fr =1 — prtan ¢ — ¢ (11)
where ¢; and ¢ are the friction angle and cohesion of soft
interfaces, and 7; is the total shear stress on the soft inter-
faces defined as

TP = JTaTh (12)

Similarly, the plastic potential function of soft interfaces
can be written as

Gr = 17 — prtan [N (13)
where ¢; is the dilatancy angle of soft interfaces.

The shear failure occurs on the soft interfaces when the
stress condition reaches critical state of Fy = 0, and the
increment of equivalent plastic strain can be defined as

2
=pl _ [2( 4Pl pl
degf’ = \/;<d£f £ ) (14)

where ds}’1 is the plastic strain of soft interfaces calculated
by equation (7).

The plastic strain component on soft interfaces can be
expressed as

dsfpl = d&'sin ¢;

15
dyt! dé‘r’l —COS ¢y (15)
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where dsfn is the normal plastic strain on soft interfaces,
d)/f is the shear plastic strain on soft interfaces (i = x, y).

The yield function and potential function of rock
matrix by Drucker—Prager criteria are defined as follows

F,=qg—ptan ¢, — ¢,
{Gr=q—ptan ¢, (16)

where ¢ is Mises stress, p is confining stress, ¢, and ¢, are
the cohesion and friction angle of rock matrix, and ¢, is
the dilatancy angle of rock matrix.

Model implementation and numerical
verification

As already described in sections 2 and 3, the layered rock
is seen as a composite materials composed of rock matrix
and soft interfaces. Here, we present the development and
implementation of the above anisotropic constitutive
model into the geomechanical simulator ABAQUS-
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MATLAB, in which MATLAB language is as the
program platform and ABAQUS software is calculation
solver for rock matrix and soft interfaces.

There are four major parts in this program: rock matrix
analysis part, soft interface part, MATLAB interface part
and alternating iteration part.'® The rock matrix part and
soft interface part are executed on the compatible numeri-
cal grids and linked through the stress field by the alter-
nating iteration method (Fig. 2).

The calculation process can be depicted as follows:
first, the rock matrix part is applied, then the soft inter-
face part is called by taking the stress result of rock
matrix as the initial stress condition, then the above
rock matrix part is called by taking the stress result of
soft interfaces as the initial stress condition, and the
program is terminated until the stress difference is satis-
fied the condition of ||o;| — |o¢|| < & at any node in the
numerical grids.

In order to verify the effectiveness of the above consti-
tutive model, a typical triaxial compression test is applied
to verify it. The mechanical parameters of rock matrix
and soft interface in composite rock mass are shown in
Table 1. The angle between the compressive load and
soft interfaces is shown as Fig. 3.

Figure 3 shows the results of compressive strength for
dip angle changes under the condition of triaxial com-
pression. In this simulation, the compressive strength is
affected obviously by dip angle of soft interfaces within
the range [30° 80°] and tends to the minimum when the

Table 1 Mechanical parameters of calculated model

Material E (MPa) 7 c (MPa) ® (%)

Rock matrix 800 0-3 2 30

Soft interface 1 20
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3 The relation of strength and dip angle of layered rock

dip angle is 50-60°, whereas the compressive strength is
not changed with the dip angle out of the range [30°
80°]. The numerical solution is consistent with the
analytical solution from Jaeger’s theory for strength
characteristics, which demonstrates that the proposed
model can simulate the anisotropic characteristics of
layered rock mass.'!

Cases analysis

A tunnel excavation process in layered rock mass is taken
as an example, and the excavation disturbed zone (EDZ)

is studied by the above anisotropic constitutive model.
The over excavation radius of the investigated tunnel is
2-445 m, and the outer radius of lining is 2-4 m with thick-
ness of 0-4 m. The in situ stress and the lateral pressure
coefficient is 0-8. The dip angle of soft interfaces is
60°, and the spacing of soft interfaces is 0-3 m with
the connectivity rate of 1 in the finite element model.
The elastic parameters of soft interfaces are normal
stiffness of 100 MPam ™' and tangential stiffness of
60 MPam™'. The main calculation parameters are
shown in Table 2.

Owing to highly non-linear characteristics of layered
rock mass, the excavation project and constitutive
quality of tunnel have obvious effects on the EDZ. The
influence of stress release on interface failure is studied
by anisotropic constitutive model with stress release rates
of 20, 40, 60 and 80%, respectively. The interface plastic
strain variation plots are shown in Fig. 4. The magnitude
and scope of plastic strain increase obviously with the
stress releasing rate increasing. The maximum plastic
strain is 2-025x1072 with the stress release rate of 20%,
whereas the maximum plastic strain is 5-796x10% with
the stress release rate of 80%. The stability of the surround-
ing rock is mainly determined by the action of soft inter-
faces, where the magnitude of plastic strain along soft
interfaces is significantly greater than that of rock matrix.

Table 2 Rock mass mechanical parameters
Weight Elastic
density modulus Poisson’s Cohesion Friction Dilatancy
Name (kN m=3) (MPa) ratio (MPa) angle (°) angle (°)
Rock matrix 23.0 300 0-13 0-4 28-16 0
Soft interface 0-04 15 0
Lining 25 30 000 0-25
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The dip angle of soft interfaces has significant influ-
ence on the stability of underground surrounding rock.
This is illustrated in Fig. 5 when the stress release rate
is 60%. It can be seen that the distribution state of
EDZ is controlled by the dip angle of soft interfaces,
and the direction of long axis of EDZ is against that of
dip angle. When the direction of soft interfaces is not
horizontal or vertical, the distribution graph of total
plastic zone is asymmetric. The dip angle of soft inter-
faces obviously affects the maximum of plastic strain in
surrounding rock. The damage level of surrounding
rock is lowest for the dip angle of 0°, whereas the
damage level of surrounding rock is highest for the dip
angle of 60°.

Conclusions

The main conclusions that can be drawn from this study

are

1. Based on Drucker—Prager criterion, a new anisotro-
pic constitutive model is provided for layered rock
mass, which can consider the own mechanics proper-
ties of rock matrix and soft interfaces.

2. The proposed constitutive model is implemented in
the simulator of ABAQUS-MATLAB, which the
ABAQUS software is embedded as solver. A typical
example of compression is tested, and the numerical
results are consistent with the analytic solution of
Jaeger theory.

3. The proposed model is applied to tunnel excavation
simulation, and the results show that it can effectively
reflect the intrinsic anisotropy of layered rock and can
depict the deformation and failure of rock matrix and
soft interfaces, respectively.
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