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ABSTRACT
The content of amorphous silica in Yanchang formation shale ranges from
1.48% to 19.89%, with an average of 11.77%. The Chang 7–3 submember
(the submember 3 of the seventh member of Upper Triassic Yanchang
formation) shale contains much larger content of amorphous silica.
Amorphous silica appears as opal rim closely adjacent to detrital quartz,
cement among clay minerals, and cement aside detrital minerals. Silica
originates from clay mineral transformation and pressure solution of detrital
quartz. Mineral composition, growth space, and overpressure affect the
content of amorphous silica. Amorphous silica reduces the brittleness of
shale reservoir, decreases the density of Chang 7–3 submember shale, and
causes an increase in AC values for Chang 7–3 submember shale.

ARTICLE HISTORY
Received 2 August 2018
Revised 25 August 2018
Accepted 6 September 2018

KEYWORDS
Amorphous SiO2; lacustrine
shale; ordos basin;
QEMSCAN; quantitative
calculation

Introduction

Mineral composition is usually the foundation in all researches about shale reservoir. Most shale
mainly consists of clay and detrital minerals, such as Yanchang formation shale in Ordos Basin, Lower
Cambrian shale, and Wufeng-Longmaxi-Niutitang Formation shale in Sichuan Basin (Han et al. 2013;
Jiang et al. 2016; Lai et al. 2015; Luo et al. 2017). Some other productive shale contains a high
concentration of siliceous minerals, limestone, and minor dolomite, such as the Barnett shale (Ross
and Bustin 2008). Moreover, there are shale reservoirs, such as Niobrara Formation shale and the
lower black mud rock member of the Besa River, Colorado, which are dominated by calcite and clay
minerals (Kuila et al. 2012; Ross and Bustin 2008). Some shale even develops tuffaceous matter, such as
Permian Lucaogou Formation shale in Santanghu Basin, China (Liu et al. 2015). Researchers discussed
the great effect of mineral on shale reservoir properties, such as shale brittleness, shale pore space,
microfracture development, and gas-bearing property, based on the research of mineral composition
(Jarvie et al. 2007; Kuila et al. 2012; Ross and Bustin 2008; Zou et al. 2010).

In previous researches, X-ray diffraction (XRD) and X-ray fluorescence (XRF) are commonly used to
evaluate the mineral composition and elemental composition in shale reservoirs. XRD cannot quantita-
tively calculate all the constituent parts in shale, such as amorphous silica, because amorphous silica cannot
display diffraction properties of the crystal. XRF (XRF) also cannot indicate the mineral composition
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because this method is used for elemental analysis. But, amorphous silica is surely developed in shale and
also has a significant impact on the physical properties of shale reservoir.

There are some studies that focused on amorphous silica and qualitatively described the effect of
amorphous silica on physical properties of the shale reservoir. The amorphous silica in marine and
lacustrine shale is mainly originated from sponge spicules, such as the Monterey Formation shale
and shale in the Liard Basin, and smectite–illite transformation and pressure solution of detrital
quartz, respectively (Peltonen et al. 2009; Ross and Bustin 2008; Thyberg et al. 2010). The amor-
phous silica induced great changes for physical properties of shale reservoir. After undergoing
diagenesis to opal-CT, which was made up of tiny microcrystalline blades with water content as
high as 10 wt%, porosity typically drops from around 45% to below 25%, permeability drops to
negligible levels, and the rock becomes well-indurated and brittle (Chaika and Williams 2001). The
effect of amorphous silica on shale reservoir can also be reflected by the changes in acoustic travel
time logging and density logging responses (Peltonen et al. 2009; Thyberg et al. 2010).

However, qualitative description rather than quantitative analysis was conducted in all of these
researches. This study quantitatively analyzed the content of amorphous silica. On the basis of
quantitative calculation of amorphous silica in shale, the controls to amorphous silica formation and
the effects of amorphous silica on shale reservoir property were also discussed.

Geological setting

The Ordos Basin is an important and major petroliferous basin situated in the central part of the
North China (Figure 1). It is a multicycle cratonic basin developed on the Archean granulites
and lower Proterozoic greenschists of the North China Block (Yang, Zhang, and Tang 2013; Lai

Figure 1. Map of the research area in the Ordos Basin, central China.
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et al. 2016). The Ordos Basin can be divided into six tectonic units. The research area is located
in the southeast of the Yishan ramp region. The Yanchang formation shale layers were deposited
in a freshwater lacustrine sedimentary environment, contains significant organic matter, lamina,
pyrite framboids, and nano-fossils (Chen and Li 2007). The late Triassic Yanchang formation has
been divided into 10 members according to the marker beds and sedimentary cycles. Shale
layers, the main source rock in the area, are primarily deposited in Chang 7 member (C7M).
Shale of Chang 7 member can be divided into Chang 7–2 submember (C7-2SM) and Chang 7–3
submember (C7-3SM), both of which display higher gamma readings at the upper parts
(Figure 2) because of containing volcanic debris with radioactive substances (Qiu et al. 2011).
Yanchang formation shale layers include black shale, oil shale, dark gray mudstone, and silty
mudstone (Figure 3). The two submembers show significant differences in their acoustic time

YGHL7-3

Shale Mudstone
Silty

mudstone
Argillaceous

siltstone
Fine 

sandstone
Coarse 

sandstone

Figure 2. Lithological and logging characteristics of Chang 7 member shale in the Ordos Basin.
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and density data, with C7-3SM displaying abrupt increase in sonic transit time (AC) values and
decrease in bulk density (DEN) values (Figure 2).

Material and methods

Material

A total of 30 prospecting wells within the Odors Basin have penetrated the bottom of the Yanchang
formation to date. In this study, more than 300 samples were obtained from nine of these wells
(Figure 1) for use in experimental analyses. Samples were freshly cut after removing the weathered
surface of the core. Shale and mudstone samples were used in all the analysis except scanning
electron microscope (SEM) observation, in which silty mudstone samples were used.

Methods

Geochemical analysis
Rock-Eval pyrolysis is an established method for the geochemical characteristic of sedimentary rocks.
The samples were subjected to programmed heating in an inert atmosphere to determine the amount
of volatile gas and residual hydrocarbons (S1 peak) and the amounts of nonvolatile hydrocarbons
and oxygen-containing organic compounds released during thermal cracking of the remaining
organic matter in the rock (recorded as S2).

Lithology analysis
The samples from Yanchang formation shale were ground to powder finer than 2 μm and analyzed
for whole-bulk and clay fraction mineralogy by quantitative XRD. The mineral composition was
measured by a Rigaku automated powder diffractometer (D/MAX-RA) equipped with a Cu X-ray
source (40 kV, 35 mA). The bulk mineral composition of the powder sample was determined over an
angular range of 4 to 70°2θ at a scanning speed of 1°2θ/min. The different clay minerals were
determined over an angular range of 3 to 65° 2θ at a scanning speed of 1.5° 2θ/min. Quantification of
the minerals was based on calculations of the integrated area of the clay minerals using Jade 6.5
software.

Porosity and permeability analysis
The porosity of dry samples was determined by grain density obtained from helium pycnometry and
bulk volume of the plugs was calculated from mercury immersion (Chalmers et al., 2011; Cui,
Bustin, and Bustin 2009). The total porosity was calculated from the difference between bulk and
skeletal densities. The permeability was calculated from measurements with helium expansion at a
constant temperature of 30°C and a range of pressures from 5 MPa to 30 MPa in a stepwise increase
(Ghanizadeh et al. 2014).

2cm A 2cm B 2cmC 2cm D

Figure 3. Core photos of the Yanchang formation shale reservoir.
A: YGHL7-3, 1,190.5 m, Black shale; B: PCU33-2, 1,645.35 m, oil shale; C: YYP3, 1,198.85 m, dark gray mudstone; D: LP171,
1,509.85 m, silty mudstone
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Mechanical properties of rock tests
The core samples had a diameter of 25 mm and a length-to-diameter ratio of 2. The stress was loaded
until the sample was irrevocably damaged. Rockmechanical parameters, including compressive strength,
Young`s modulus, and Poisson’s ratio, were tested by GCTS-RTR-1500 (Geotechnical Consulting and
Testing Systems, Rapid Triaxial Rock Testing System) under constant confining pressure (10 MPa)
conditions. The confined pressure limit of the equipment was 210 MPa; the capacity of the axial loading
was 1,500 kN; the radial and axial displacement limits were ±2.5 mm, respectively. The samples in this
research had no factitious fractures on the surface formed during the drilling process.

Pore image analysis
Image analysis in this research was conducted on a SEM equipped with an energy-dispersive spectro-
meter (EDS). Fresh plane of fracture is used in this study. The surface of the fresh plane was coated
with Au to improve acquisition of secondary as well as EDS data. SEM analyses were undertaken after
coating the samples with Au at an operating current of 15kV.

QEMSCAN analysis
The QEMSCAN is a high-throughput automated analysis solution, used mainly in the natural resources
industry, where analysis of particulates is required to solve practical problems or to improve scientific
processes. The system comprises a SEM with a large specimen chamber, multiple high-speed EDSs, and
state-of-the-art automated quantitative mineralogy image analysis and microanalysis software.

Quantitative analysis of amorphous sio2

The content of quartz acquired by QEMSCAN should include the content of crystalline state quartz
and amorphous silica because the minerals were identified according to elemental composition
determined by EDS (Figure 4). The content of quartz can be calculated by XRD. Then, the content
of amorphous silica can be calculated by combining XRD and QEMSCAN. The calculation formula
and process have been described in detail by Huang et al. (2015).

Results

Composition characteristics

S1 for C7-2SM shale varies from 1.35 mg/g to 6.61 mg/g, with a mean of 3.63 mg/g, while S1 for C7-
3SM shale ranges from 3.71 mg/g to 10.87 mg/g (Figure 5). S2 for C7-2SM shale ranges from
3.75 mg/g to 15.43 mg/g with an average of 8.03 mg/g, while S2 for C7-3SM shale varies from

Figure 4. The QEMSCAN of shale sample from Yanchang formation of Ordos Basin.
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8.02 mg/g to 24.05 mg/g with an average of 13.19 mg/g (Figure 5). The values of S1 and S2 for C7-
3SM shale samples are larger, which means C7-3SM shale samples contain larger content of residual
hydrocarbon and kerogen. The kerogen in C7-2SM shale mainly contains Type II2 and possibly Type
III organic matter. Approximately half of the C7-3SM shale samples contain Type II1 organic matter
and the other half Type II2 (Figure 5).

The content of clay minerals and detrital minerals are approximately equal. Quartz and an
illite—smectite mixed layer are the major components of detrital and clay minerals, respectively.
The amounts of different types of clay and detrital minerals do not vary greatly between C7-2SM
and C7-3SM (Figure 6). C7-3SM displays larger content of the illite––smectite mixed layer
(66.95%) and reducing minerals (9.26%), but lower content of quartz (25.42%).

The volume percentage of quartz and amorphous silica in C7-3SM shale varies from 40.07% to
49.75%, with a mean of 46.803%, while that in C7-2SM shale ranges from 34.03% to 43.25%, with a
mean of 39.592% (Table 1). The content of amorphous silica (mass of percentage) in Yanchang
formation shale ranges from 1.48% to 19.89%, with an average of 11.77% (Table 1). The average
content of amorphous silica in C7-3SM shale is 16.25%, while that in C7-2SM shale is 7.29%. C7-
3SM shale contains a larger content of amorphous silica than that of C7-2SM shale (Figure 6).

Porosity characteristics

Yanchang formation shale displays apparently low porosity and permeability. Porosity ranges from
0.162% to 2.69%, with an average of 1.57%. Permeability varies from 0.000047 mD to 0.007 mD, with
a mean of 0.0012 mD. There is no huge difference in porosity and permeability between C7-2SM
shale samples and C7-3SM shale samples (Figure 7). Much more researches about porosity and pore
structure were presented in Lai et al. (2018).

Mechanical properties of rock

Young’s modulus of Yanchang formation shale ranges from 13.3 N/mm2 to 71.4 N/mm2, with an
average of 36.5 N/mm2. Poisson’s ratio of Yanchang formation shale ranges from 0.202 to 0.406,
with an average of 0.31. Samples of C7-3SM shale exhibit lower values of Young’s modulus and
Poisson’s ratio than samples of C7-2SM shale (Table 2)

SEM observation

Authigenic quartz mainly occurred in pores with diameters about 5 ~ 30 μm and isolated by clay
minerals (Figure 8). These pores are usually filled with authigenic quartz, chlorite, and dolomite.
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Figure 5. Relationships between S1 and S2 and plot of the hydrogen index (HI) versus Tmax.
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Authigenic chlorite and dolomite can be clearly observed in pores developed in silty mudstone
(Figure 8d–i). Authigenic quartz is usually less than 10 μm in diameter and emerges among
authigenic chlorite particles. Dolomite is located in the center of these pores (Figure 8d–f), and
chlorite nearest to the rim, leaving quartz occurred between them. The phenomenon that quartz
crystals live together with dolomite indicates a change of pore fluid in pH.

Detrital quartz is easily observed, especially in silty mudstone samples. They are usually surrounded
by clay minerals or amorphous silica (Figure 9). Rims of detrital quartz are always jagged, indicating
chemical solution (Figure 9a,b). Amorphous silica in Yanchang formation shale can be classified into
three types. Type I is appearing closely adjacent to detrital quartz as opal rim, which can be distinguished
from detrital quartz via different gray level. There is no clear boundary between detrital quartz and this
type of amorphous silica. This type of amorphous silica is like micromonticules or granular crystals on
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the surface of detrital quartz (Figure 9c–e). Type II is emerging among clay minerals as cement. Most of
the amorphous silica among clay minerals usually display no concrete form or shape (Figure 9 F), but
occasionally they are sheet like (Figure 9h,j,k). This type of amorphous silica mainly occurs in pure shale.
Type III is emerging aside detrital minerals as cement (Figure 9l,n,o). A clear boundary or crack can be
observed between this amorphous silica and other minerals. This type of amorphous silica may be from
shale around the silty mudstone. Amorphous silica released from smectite to illite or chlorite transfor-
mation transported to silty mudstone because of compaction during diagenesis. More details about silica
in shale reservoir were presented in Liu et al. (2016).

Table 1. Experimental data statistics of the method to calculate amorphous silica.

Sample ID Depth (m) Member

Mass
percentage
of quartz

(%)

Average
density of
amorphous
silica (g/cm3)

Average
density of
quartz (g/

cm3)

Density
of

sample
(g/cm3)

Volume
percentage of
silica mineral

(%)

Mass
percentage

of
amorphous
silica (%)

LP171 1,509.25 C7-2SM 34 2.19 2.5915 2.49 39.592 8.67
PCU33-2 1,619.32 C7-2SM 35 2.19 2.5915 2.55 43.13 10.79
YGHL22-1 1,146.97 C7-2SM 32 2.19 2.5915 2.53 39.91 10.46
YGHL22-2 1,205.45 C7-2SM 34 2.19 2.5915 2.58 43.25 11.41
YGHL22-3 1,446.75 C7-2SM 36 2.19 2.5915 2.51 42.18 9.32
PCU33-2 1,614.42 C7-2SM 35 2.19 2.5915 2.61 42.41 8.66
YGHL7-3 1,189.85 C7-2SM 34 2.19 2.5915 2.62 35.63 1.48
YGHL7-3 1,196.35 C7-2SM 37 2.19 2.5915 2.57 40.87 5.23
YYP1 1,421.9 C7-2SM 30 2.19 2.5915 2.58 34.03 4.77
YYP3 1,200.1 C7-2SM 32 2.19 2.5915 2.57 34.19 2.88
YYP3 1,199.4 C7-2SM 35 2.19 2.5915 2.59 40.32 6.49
LP171 1,554.15 C7-3SM 34 2.19 2.5915 2.51 46.803 17.42
PCU33-2 1,639.6 C7-3SM 35 2.19 2.5915 2.55 49.75 19.20
YGHL22-1 1,189.45 C7-3SM 34 2.19 2.5915 2.53 48.3 18.85
YGHL22-2 1,248.45 C7-3SM 33 2.19 2.5915 2.57 49.11 19.89
YGHL22-3 1,486.75 C7-3SM 35 2.19 2.5915 2.57 49.26 18.08
PCU33-2 1,644.42 C7-3SM 34 2.19 2.5915 2.55 42.15 10.67
YGHL7-3 1,211.15 C7-3SM 32 2.19 2.5915 2.5 40.07 11.24
YGHL7-3 1,216.33 C7-3SM 34 2.19 2.5915 2.57 48.5 18.14
YYP1 1,454.9 C7-3SM 36 2.19 2.5915 2.6 48.85 15.80
YYP3 1,230.1 C7-3SM 34 2.19 2.5915 2.57 49.14 18.94
YYP3 1,231.1 C7-3SM 36 2.19 2.5915 2.5 42.9 10.48
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Figure 7. Cross-plot of porosity and permeability.
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Discussion

Origin of silica in shale layers

Clay mineral transformation, such as smectite transforming to chlorite, is one of the original
processes of silica in Yanchang formation lacustrine shale. A series of evidence prove that clay
mineral transformation has been going on in Yanchang formation shale. First, amorphous silica was

Table 2. Experimental data statistics of Young's modulus and Poisson's ratio.

Sample ID Depth (m) Member
Mass percentage of

quartz (%)
Mass percentage of
amorphous silica (%)

Young’s modulus
(N/mm2)

Poisson’s
ratio

LP171 1,509.25 C7-2SM 34 8.67 36.8 0.344
PCU33-2 1,614.42 C7-2SM 35 8.66 42.1 0.385
YGHL7-3 1,196.35 C7-2SM 37 5.23 71.4 0.406
YGHL22-2 1,205.45 C7-2SM 34 11.41 34.4 0.401
YGHL22-3 1,446.75 C7-2SM 36 9.32 42.6 0.337
YYP1 1,454.9 C7-3SM 36 15.80 34.2 0.271
YGHL22-2 1,248.45 C7-3SM 33 19.89 13.3 0.202
YGHL22-1 1,189.45 C7-3SM 34 18.85 25.4 0.24
LP171 1,554.15 C7-3SM 34 17.42 28.7 0.204
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Figure 8. SEM images of authigenic quartz in Yanchang formation shale (Liu et al. 2016).
A ~ C: shale; D ~ I: silty mudstone.
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Figure 9. SEM images of detrital quartz and amorphous silica in Yanchang formation shale (Liu et al. 2016).
A ~ E: silty mudstone; F ~ K: shale; L ~ O: silty mudstone. The red arrows indicate the boundary between amorphous silica and
other minerals.
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observed between clay minerals (Figure 9f,h). Second, some small authigenic quartz usually emerges
among authigenic chlorite particles.

Pressure solution of detrital quartz is another original process of silica in Yanchang formation
lacustrine shale. The jagged or saw-toothed rims of detrital quartz indicate dissolution happened
during diagenesis (Figure 9a,b). Large content of amorphous silica is closely adjacent to detrital
quartz as overgrowth. This amorphous silica and detrital quartz are tightly surrounded by clay
minerals, which do not display the state and morphology like authigenic chlorite. This phenomenon
suggests that amorphous silica closely adjacent to detrital quartz is not from clay mineral transfor-
mation but detrital quartz dissolution.

Controlling factors of amorphous silica

Composition
Clay mineral transformation and pressure solution of detrital quartz are the original processes of
silica. Hence, mineral composition is one factor to amorphous silica. C7-3SM shale displays a larger
content of the illite/smectite mixed layer and a lower content of quartz than C7-2SM shale. More
illite/smectite mixed layer means more amorphous silica released from clay minerals transformation.
Lower content of quartz indicates larger part of quartz has been dissolved.

Another factor that affects amorphous silica is residual hydrocarbon, which can inhibit the
growth of authigenic quartz from silica (Li et al. 2010; Marchand et al. 2001). C7-3SM shale contains
much more content of kerogen with better kerogen types, which released more hydrocarbon
indicated by the larger values of S1 for C7-3SM shale.

Growth space
Growth space is an important factor of controlling the content of amorphous silica via confining the
growth of authigenic quartz. The SEM observation indicates that all the authigenic quartz, no matter
in pure shale (Figure 8a–c) or silty mudstone (Figure 8d–i), is merely formed in relatively large
pores. Silica without space around has to stay in an amorphous state (Figure 8). Chang 7 member
shale, both C7-2SM shale and C7-3SM shale, displays fairly low porosity (Figure 7), caused by a large
content of clay minerals. Clay mineral transformation processes released a large quantity of silica,
which cemented mineral particles together and induced lower porosity of shale reservoir. Then, in
turn, lacking space stopped amorphous silica from growing into authigenic quartz (Figure 9).
Moreover, silica released by pressure solution of detrital quartz are tightly surrounded by clay
minerals (Figure 9a,c,e), leaving no space for authigenic quartz growth.

Moreover, pores in pure shale are primarily of nanometer scale size, ranging from less than 10 nm
to 100 nm (Nelson 2009; Yang et al. 2013), while authigenic quartz mainly occurred in isolated pores
with diameters no less than 5 μm according to SEM observation and statistics. Deficient pore size is
another aspect of lacking growth space for authigenic quartz.

Overpressure
Overpressure is another important factor in controlling the content of amorphous silica via confin-
ing the growth of authigenic quartz. Overpressure can stop amorphous silica from altering to quartz
(Meng et al. 2013; Taylor et al. 2010). A concise description of overpressure is that the liquid was
preserved in the pores and bore part of pressure produced by the overlying strata, leaving the
mudstone layer undercompacted. Acoustic travel time logging is a useful method to indicate the
overpressure in shale. It shows in Figure 10 that AC data of wells increase obviously and abruptly,
which means overpressure develops.

Higher content of residual hydrocarbon is an appropriate explanation for the overpressure. Better
kerogen types for oil generation cause higher content of residual hydrocarbon in C7-3SM shale.
Residual hydrocarbon contained in C7M shale cannot be released out and bear part of pressure,
causing the strata not compacted enough.
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The dotted red line indicates mudstone normal compaction disciplinarian. The solid red line
indicates undercompaction disciplinarian. The green dotted red lines show the undercompaction
zones. Except for shale and mudstone, other types of rocks and AC data corresponding to these
rocks have been eliminated.

Influence of amorphous silica on reservoir

Except decreasing shale reservoir porosity (Figure 7), the more severe impact of amorphous silica on
the reservoir is decreasing brittleness of shale reservoir by cementing detrital and clay mineral particles
together (Figure 11). Both Young’s modulus and Poisson’s ratio show a negative correlation with
amorphous silica. Lower values of Young’s modulus and Poisson’s ratio for C7-3SM shale means larger
axial plastic deformation than C7-2SM shale. In other words, a higher content of amorphous silica
decreases the brittleness of C7-3SM shale, which means more difficult to be fractured.

Moreover, a larger content of amorphous silica is a factor for the higher AC data values and lower
DEN data values for C7-3SM shale. Detrital minerals and clay minerals are not the factors that cause
the increase in AC and DEN values for C7-3SM shale. First, although C7-2SM shale samples contain
lower content of quartz and higher content of illite/smectite mixed layers, the content of detrital
minerals and clay minerals do not differ sharply between C7-2SM shale and C7-3SM shale. Second,
although acoustic waves travel much faster in quartz than in illite/smectite mixed layers, the speed of
acoustic waves does not vary greatly among different kinds of detrital minerals or different types of
clay minerals. Similarly, the density does not differ greatly among different kinds of detrital minerals
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Figure 10. Profiles of sonic transit times versus depth for shale and mudstone.
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such as quartz and feldspar, or different types of clay minerals. Density of quartz is around 2.65 g/cm3.
Density of feldspar ranges from 2.61 g/cm3 ~ 2.76 g/cm3.

Compared with other detrital minerals, such as quartz and feldspar, the density of amorphous silica is
much lower. Taking opal as an example, the density of opal is around 2.2 g/cm3, while the density of quartz
is around 2.65 g/cm3. In fact, the density of opal is even much less than that of clay minerals, such as illite
and chlorite. The speed of acoustic waves is much faster in minerals or rocks with higher density than that
in minerals or rocks with lower density (Buntebarth 1982; Rybach and Buntebarth 1982). More accurately,
the average content of amorphous silica in C7-3SM shale is 16.25%, which is larger enough to cause the
abrupt increase of AC values for C7-3SM shale. Much larger content of amorphous silica in C7-3SM shale
is the key factor to higher AC values and lower DEN values than C7-2SM shale.

Conclusion

(1) The mass of the percentage of amorphous silica in Yanchang formation shale ranges from
1.48% to 19.89%, with an average of 11.77%. C7-3SM shale contains much larger content of
amorphous silica than C7-2SM shale.

(2) Amorphous silica in Yanchang formation shale can be classified into three types. Type I is
appearing closely adjacent to detrital quartz as opal rim. Type II is emerging among clay
minerals as cement without concrete form or shape. Type III is emerging aside detrital
minerals as cement. Clay mineral transformation and pressure solution of detrital quartz are
the original processes of silica in Yanchang formation lacustrine shale. Mineral composition,
growth space, and overpressure are the factors controlling the content of amorphous silica
via influencing the growth of authigenic quartz.

(3) Amorphous silica decreases shale reservoir porosit, and reduces the brittleness of shale reservoir.
Moreover, a much larger content of amorphous silica decreases the density of C7-3SM shale and
causes an increase in AC values for C7-3SM shale.
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