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The Saertu Oilfield of Daqing in northeast China has entered ultrahigh water-cut stage of development. Numerical simulation is
applied in this paper to study characteristics of microscopic fluid velocity and flow pressures variation in the core pores in the Beier
Area of Saertu Oilfield. The relationship between the remaining oil distribution and microscopic flow characteristics of fluid in the
pores has been analyzed. Study results show that, in the reservoir with stronger heterogeneity of grain size and throat (corresponding
to high coordinate number), high flow velocities tend to occur in relatively wider pore throats with great differentiation of flow
velocities. The dominant passages are developed in high capacity channel, the detour flows are created in large porous channels,
and the isolated islands are formed in small porous channels. The flow velocity declines slowly with long duration of high pressure.
Few pores are swept by injected fluids with low sweep efficiency.Themicroscopic remaining oil is mainly distributed in cluster state.
The content of remaining oil is higher with lower oil displacement efficiency. By contrast, in the reservoir with weaker heterogeneity
of grain size and throat (corresponding to low coordinate number), high flow velocities also develop in relatively narrower pore
throats with little differentiation of flow velocities. The development of detour flows is weaker in large porous channels. The flow
velocity declines quickly with a short duration of high pressure. More pores are swept by fluids with high sweep efficiency. The
remaining oil is mainly distributed in state of thin film on pore surface. The content of remaining oil is lower with higher oil
displacement efficiency.

1. Introduction

TheSaertu Oilfield of Daqing has entered ultrahigh water-cut
stage of development. The remaining oil is highly dispersed
in reservoirs with problems of low flooding efficiency and of
severely ineffective cycles. The preliminary statistics indicate
that the recoverable remaining oil reserve accounts for 40%of
the total oil reserves but with difficulties in potential tapping
[1–3]. Up to now, the main studies on the remaining oil have

been focused on macroscopic distribution characteristics in
the aspects of well pattern control, reservoir heterogeneity
and sedimentary facies belts, and so forth [4–9]. When the
comprehensive water cut of an oilfield reaches an ultrahigh
stage, macroscopic study cannot well solve the problems
of remaining oil distribution, so a more detailed investiga-
tion in a pore scale is necessary [10–14]. Previous studies
indicated that the distribution of microscopic remaining oil
in reservoirs was associated with pore structure and fluid
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flow in pores [15–22]. A combined study on distribution
characteristics of the microscopic remaining oil in reservoirs
on a comprehensive basis of pore structures, heterogeneity,
and microscopic flow of fluid in pores is significant to
make reasonable development plans during the ultrahigh
water-cut stage. Based on the pore structure characteristics
in the reservoirs of the Beier Area in Saertu oilfield, the
images of casting thin sections of core samples are selected
to extract the pores and characterize boundaries. Then the
geological models and mathematical models of a pore scale
are established to simulate the fluid velocity and flow pressure
distribution in pores with different pore structures, with aims
of understanding the relationship between the velocity field of
fluid in pores and distribution of microscopic remaining oil
and of analyzing the oil displacement efficiency as well.

2. Geological Features of the Beier Area of
Saertu Oilfield

The Beier Area of Saertu Oilfield is located in the northern
part of Daqing Placanticline from the Songliao Basin (Fig-
ure 1) with a gentle structure and formation dip angle of
about 3∘ [23]. There are many NNE-trending normal faults
in this block. The maximum of the extensional fault can be
up to 6.6 km in length with a minimum length of 0.5 km.The
maximumof fault throw can be up to 92.0mwith aminimum
fault throw of 1.2m, with an average fault dip angle of about
52∘.

Three sets of major reservoir formations were developed
in the Beier Area of Saertu Oilfield, which are termed as
the Saertu, Putaohua, and Gaotaizi Formations (Figure 2).
The reservoirs consist of large-scale fluviodeltaic sedimentary
sequences with a strong heterogeneity and a burial depth of
870∼1200m [24]. The main rock types include interbedded
sandstone andmudstone. At present, the reservoirs of Saertu,
Putaohua, and Gaotaizi are the main producing factories
(reservoirs) in which Saertu reservoir is divided into three oil
formations, the Putaohua into two, and theGaotaizi into four.

The target layer of this study is the first segment of the
Putaohua Formation (member PI). Member PI is favorable
in permeability with an average thickness of 21.4m. The
lithology assemblage consists of sandstone and siltstone.

The average air permeability is 0.649 𝜇m2 and the average
porosity is 29.8% [25]. The core samples for this study are
from the Putaohua Formation and the coring horizons are the
second layer in member PI for Sample 1 and the seventh layer
in member PI for Sample 2. Both samples are fine-grained
oil-bearing sandstone.

3. Mathematical Model of Microscopic Flow of
Fluid in Porous Medium

The reservoir is regarded as a porous medium composed
of skeleton structures, which consist of solid materials and
a large number of dense micropores separated by skeletons
[26, 27]. If the porous medium is continuous, the flow of
fluid in porous medium can be divided into four different
scales, that is, the pore scale, core scale, mega scale, and giga

scale [28, 29]. The fluid flow in pore throats of cores belongs
to microscopic flow, which is also known as pore scale. The
microscopic flow is affected by the heterogeneity of porous
medium [30–34]. On the pore scale, the fluid flow is generally
considered to be continuous. If the density and temperature
of fluids in the pore are constant, the flow of fluids in the pore
scale can be described using the Navier-Stokes equation [35–
37].

The Navier-Stokes equation governs the flow of fluids
[38–41], and it can be regarded as Newton’s second law of
fluid. For compressible Newtonian fluid, the Navier-Stokes
equation is

𝜌 (𝜕𝑢/𝜕𝑡 + 𝑢 ⋅ ∇𝑢)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
1

= −∇𝑝𝐼⏟⏟⏟⏟⏟⏟⏟⏟⏟
2
+ ∇ ⋅ (𝜂 (∇𝑢 + (∇𝑢)𝑇) − (2/3) 𝜂 (∇ ⋅ 𝑢) 𝐼)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

3

+ 𝐹⏟⏟⏟⏟⏟⏟⏟
4
,

(1)

where 𝑢 is the fluid velocity (m/s), 𝑝 is the fluid pressure (Pa),
𝜌 is the fluid density (kg/m3), 𝜂 is the fluid dynamic viscosity
(kg/(m⋅s)), and 𝐼 is the unitmatrix. In the equation, term (1) is
for inertia force, term (2) is for pressure, term (3) is for viscous
force, and term (4) is for external force acting on the fluid.

The Navier-Stokes equation and the continuity equation
must be solved simultaneously. The continuity equation is

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌𝑢) = 0.

(2)

The Navier-Stokes equation for momentum conservation
and the continuity equation for mass conservation are the
kernel of mathematical model of fluid flow, which describe
the motion law of viscous fluid. It is nonlinear partial
differential equation that is very difficult and complex to
solve, but it can be simplified to get the approximate solution
in some conditions. When the Reynolds number is very low
(Re ≪ 1), the inertial force (time-dependent inertial force) is
very small compared to the viscous force, and it is neglected
in solving theNavier-Stokes equation. External force term (4)
might be neglected for without consideration of gravity.

For the incompressible fluids (the density of fluids is
constant), the continuity equation is

∇ ⋅ 𝑢 = 0. (3)

As the divergence of velocity is zero, there is

−23𝜂 (∇ ⋅ 𝑢) 𝐼 = 0. (4)

Therefore, the Navier-Stokes equation can be simplified
as

𝜌 (𝑢 ⋅ ∇𝑢) = ∇ ⋅ [−𝑝𝐼 + 𝜂 (∇𝑢 + (∇𝑢)𝑇)] . (5)

The Navier-Stokes equation, the continuity equation,
relative variables, and definite conditions constitute the
mathematical model of microscopic flow of fluid in porous
medium.
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Figure 1: Structural outline map of the central depression zone: A-Location of the central depression zone in the Songliao Basin, A the
western slope zone, B the northern plunge zone, C the central depression zone, D the northeastern uplift zone, E the southeastern uplift
zone, andF the southwestern uplift zone.

4. Numerical Modeling Process

4.1. The Building of the Geological Model. Two core samples
(Sample 1 and Sample 2) with different pore structures from
the Putaohua Formation in the Beier Area of the Saertu
Oilfield were collected to be studied in this paper. Parameters

that characterize the pore structures include channel radius,
coordinate number, pore throat ratio, and heterogeneity
coefficient, among which the coordinate number refers to
the number that a pore links to throat. Grains and throat
distribution of Sample 1 show stronger heterogeneity with
an average coordinate number of 4.5. Grains and throat
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Figure 2: Profile map of the different layers in Beier area.

distribution of Sample 2 show weaker heterogeneity with
an average coordinate number of 2.5. Geological model is
designed on the basis of the images of casting thin sections
of the core samples (Figures 3 and 4); that is, casting images
are transformed into geometric model by pore extracting
and boundary characterizing [42–45]. The dimensions of
geological models of Sample 1 and Sample 2 are both 1657 𝜇m
× 1228𝜇mand parameters of the pore structures in themodel
are listed in Table 1. Fluid flow in pores of model is laminar
with a flow direction from right to left and without fluid
entering grains.

4.2. Model Parameters and Boundary Conditions. The fluid
parameters and boundary condition settings of the models
are listed in Tables 2 and 3, respectively. The left boundary is
the outlet and the right boundary is the inlet, with the upper
and lower boundaries as symmetrical boundaries. The flow

Pore

Grain

400 Ｇ

Figure 3: Image of cast Sample 1.

is symmetric and there is on axial velocity on the symmetric
plane about the upper and lower boundaries. There are no
fluid flowing and no grain slipping at the grain boundaries.
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Table 1: Parameters of pore structure in the geological models.

Number
Average pore
diameter (𝜇m)

Average
coordinate
number

Average pore
throat ratio

Minimum of
throat (𝜇m)

Maximum of
throat (𝜇m)

Average of
throat (𝜇m)

Heterogeneity
coefficient

(1) 149.21 4.5 4.03 1.29 154.55 35.96 0.56

(2) 136.17 2.5 4.55 4.65 101.98 25.31 0.49

Table 2: Model parameters.

Variables Value Description

𝜌 1000 kg/m3 Fluid density

𝜂 0.0015 kg/(m⋅s) Dynamic viscosity

𝑝 0.75 Pa Pressure drop

Table 3: Boundary condition settings.

Boundary type Boundary setting Value

Outlet Outlet, pressure 0

Inlet Inlet, pressure 0.75 Pa

Grain boundaries
Wall, no fluid flowing, and

no grain slipping
-

Symmetry boundaries
Symmetry, on axial fluid

flowing
-

Pore Grain

400 Ｇ

Figure 4: Image of cast Sample 2.

4.3. Simulation Process. COMSOLMultiphysics is applied to
simulate the microscopic flow characteristics of fluid in the
pore throats of core samples with different pore structures
(different coordinate numbers). Core Sample 1 and Sample
2 are, respectively, simulated to unravel the distribution
characteristics of fluid velocity and pressure and their rela-
tionship with remaining oil in the pores, with only changed
parameters of pore structures in the geological models.

5. Analyses of Simulation Results

5.1. Characteristics of Fluid Velocity Field in Core Pores
and Their Relationship with Distribution of Remaining Oil.
Figures 5 and 6 show the simulating images of velocity field
distribution of fluids in the pores of core Sample 1 and Sample
2, respectively. Figure 7 shows the types of microscopic
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Figure 5: Simulation results of pore velocity field of Sample 1 (𝜇m/s).
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Figure 6: Simulation results of pore velocity field of Sample 2
(𝜇m/s).

remaining oil in the PI of the Beier area based on analytical
technology of fluorescent microscope with frozen sectioning
[46–49]. According to Figure 5, the grain size and the throat
of Sample 1 have stronger heterogeneity (with coordinate
number of 4.5). The high flow velocities tend to occur in
the relatively wider pore throats with great differentiation
of flow velocities. The dominant passages are developed in
high capacity channels and the detour flows are created in
large porous channels. The isolated islands are formed in
small porous channels because of the insufficient driving
force of fluids. Due to the low fluid velocity and inefficient
sweep of fluids, the remaining oil of cluster state is produced
(Figure 7(a)). In particular, the other remaining oil of cant
state is formed in corners of complicated space of pores
(Figure 7(b)). The main composition of clay minerals in
the core samples is kaolinite. The flaky crystal aggregate



6 Geofluids

Grain 

Remaining Oil I

200 Ｇ

(a)

Grain 

Remaining Oil II

200 Ｇ

(b)

Grain 

Remaining Oil III

200 Ｇ

(c)

Grain Remaining Oil IV

200 Ｇ

(d)

Grain

Remaining Oil IV  

Remaining Oil V

200 Ｇ

(e)

Grain 

Remaining Oil III

Remaining Oil VI

200 Ｇ

(f)

Figure 7: Types of microscopic remaining oil: the red line represented the high flow velocities and the blue line represented the low flow
velocities. (a) RemainingOil I: remaining oil of cluster state, (b) RemainingOil II: remaining oil of cant state, (c) RemainingOil III: remaining
oil of intergranular adsorbing state, (d) Remaining Oil IV: remaining oil of state of thin film on pore surface, (e) Remaining Oil V: remaining
oil of slit state, (f) Remaining Oil VI: remaining oil of particle adsorbing state.

of kaolinite in large pore throat has undergone long-term
mechanical flushing from fluids, which breaks down the
crystal framework of aggregate into fine particles [50]. The
particles in the pore fluid aremixedwith oil and concentrated
locally to form the remaining oil of intergranular adsorbing
state (Figure 7(c)). In addition, since the particle surfaces in
large pore throat has an absorption effect on oil, the flushing
in dominant passages cannot displace this type of absorbed
residual oil. In such a case, the remaining oil of state of thin
film on pore surface is formed (Figure 7(d)). In some pores
with small diameter on the surface of mineral particle, the
remaining oil of particle adsorbing state is produced because
oil in micropores on the surface of mineral particle cannot be
displaced under the effect of capillary force (Figure 7(f)).

As shown in Figure 6, the grain size and throat in Sample
2 are of weaker heterogeneity (with coordinate number of
2.5), and the high flow velocities also develop in the relatively
narrower throat with less differentiation of flow velocities.
The degree of detour flow is lower in large porous channels.
The effective sweep degree of fluid in small pore throat is
higher. As a result, the remaining oil in different states, such
as in cluster state (Figure 7(a)), cant state (Figure 7(b)),
intergranular adsorbing state (Figure 7(c)), and state of thin
film on pore surface (Figure 7(d)) can be produced. However,
due to flushing effects by the high velocity fluids, the relative
contents of the remaining oil of cluster state and remaining oil
of intergranular adsorption in Sample 2 are lower than those
in Sample 1, whereas the relative content of the remaining
oil of state of thin film on pore surface in Sample 2 is
higher than that in Sample 1 (Table 4). On the other hand,

small connective crevices amongparticles are formedbecause
of the development of mineral dissolved fissures, cracks of
mineral particles, and cleavage cracks. Because oil in the
crevices is suffered holding force by effects of capillary force,
it cannot be displaced by the flowing fluids to form the
remaining oil of slit state (Figure 7(e)). In addition, the
remaining oil of particle adsorbing state is formed in response
to the effect of capillary force (Figure 7(f)).

5.2.Microscopic FlowCharacteristics of Fluid inCore Pores and
Their Relationship with Displacement Efficiency. Figures 8
and 9 show the simulation images of fluid pressure variations
in pores of Sample 1 and Sample 2, respectively. According
to Figure 8, the high flow velocities of Sample 1 concentrate
mainly in relatively wider throats. The flow velocity declines
slowly with slight variations of flow pressure and a long
duration of high pressure. Few pores are swept by fluids
with a low degree of flushing. The content of remaining oil
in free state is high, whereas it is low for the remaining
oil in bound state. The content of movable remaining oil
(movable remaining oil refers to the remaining oil that can be
exploited under the current technological level and exploita-
tion conditions) is relatively high but the oil displacement
efficiency is low (Table 5). As shown in Figure 9, the high
flowvelocities of Sample 2 concentratemainly in the relatively
narrower throats. The flow velocity declines quickly with
great variations of flow pressure and a shorter duration of
high pressure as well. More pores are swept by fluids with a
higher degree of flushing. Compared with that of Sample 1,
the content of the remaining oil in bound state is higher but
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Table 4: Types and relative contents of the microscopic remaining oil.

Sample number Horizon
State of thin film
on pore surface

(%)
Slit state (%) Cant state (%) Cluster state (%)

Particle
adsorbing state

(%)

Intergranular
adsorbing state

(%)

(1) PI2 15.54 0.00 1.36 44.09 2.45 36.56

(2) PI7 30.96 3.42 1.79 28.49 5.51 29.82

Table 5: The remaining oil distribution and displacement efficiency in different microscopic flow field.

Sample number Horizon
Bound state
remaining oil

(%)

Semibound state
remaining oil

(%)

Free state
remaining oil

(%)

Movable
remaining oil

(%)
Water cut (%) Flushing degree

(1) PI2 17.99 1.36 80.65 36.89 7 Low

(2) PI7 39.89 1.79 58.31 3.54 76 High
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Figure 9: Simulation results of pore pressure decline of Sample 2.

it is lower for the remaining oil in free state. The content of
movable remaining oil is lower with higher oil displacement
efficiency (Table 5).

In Table 5, bound state refers to the remaining oil which is
adsorbed on the particle surface, including state of thin film
on pore surface, particle adsorbing, and slit; semibound state
refers to the remaining oil which is in the outer layer of bound
state or far from pore surface, including cant state. Free state
refers to the remaining oil which is retained far from pore

surface, including cluster state and intergranular adsorbing
state.

6. Conclusions

(1) The microscopic flow characteristics of fluid in core
pores are closely related to the pore structures and
heterogeneity of throat. In the core with stronger
heterogeneity of both grain size and throat, the high
flow velocities tend to occur in the relatively wider
throats with great differentiation of flow velocities.
Thedominant passages are developed in high capacity
channels and the detour flows are created in large
porous channels. By contrast, the isolated islands are
formed in small porous channels. The flow velocity
declines slowly with slight variations of flow pressure
and a long duration of high pressure. The efficient
sweep area is small with a low degree of flushing.

(2) In the core with weaker heterogeneity of both grain
size and throat, the high flow velocities also develop
in the relatively narrower throats with little differen-
tiation of flow velocities. The development of detour
flows is weaker in large porous channels. The flow
velocity declines quickly with greater variations of
flow pressure and a shorter duration of high pressure.
The efficient sweep area is larger with a higher degree
of flushing.

(3) The microscopic flow characteristics of fluid in core
pores have a significant influence on the distribution
and formation of the remaining oil. In the core with
stronger heterogeneity of grain size and throat, the
microscopic remaining oil is mainly distributed in
cluster state by microscopic fingering of fluids flow
and detour flows. The content of the remaining oil is
larger with lower oil displacement efficiency.

(4) In the core with weaker heterogeneity of grain size
and throat, the remaining oil is mainly distributed in
microscopic water flooded area in state of thin film on
pore surface.The content of the remaining oil is lower
with higher oil displacement efficiency.
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